## Show that...

(1) Show that $2\left(x+\frac{1}{2}\right) \equiv x+x+1$ (1 mark, $\left.\star \star\right)$

Multiply the brackets and then simplify, to show the left-hand side and the right-hand side are the same.
(2) Show that $(x+5)(x-5)+9 \equiv(x+4)(x-4)(2$ marks, $\star \star \star)$
(3) Show that the sum of three consecutive numbers is a multiple of 3 . (2 marks, $\star$ * $\star \star$ )

(4) Here is a path around a pond.

The path is made of concrete slabs. All the concrete slabs are the same size.
Each slab has a length of $x \mathrm{~cm}$ and a width of $y \mathrm{~cm}$.
The perimeter of the pond is $P \mathrm{~cm}$. ( $\star \star \star \star \star$ )


Write all the information you know on the diagram.
Write the distance between the corner and the end of a slab at the top and bottom of the pond, in terms of $x$ and $y$ :

a Show that $P=16 x-4 y$ (2 marks)
b Sanjit says that when $x$ and $y$ are whole numbers $P$ is always a multiple of 4 . Is Sanjit correct? Explain. (2 marks)
$\qquad$
$\qquad$

## Functions

## SNAD Functions and rules

A function is a rule. The inverse function reverses the rule.
So, if a function is $\times 2+1$; then the inverse function is $-1 \div 2$
(1) Here is a function machine. ( $(\star)$

a Work out $y$ when $x$ is 3 . ( 1 mark)
b Work out $x$ when $y$ is 23. (2 marks) Use the inverse function to work out $x$.
c Write the equation in terms of $x$ and $y$. (1 mark)
[Total: 4 marks]
(2) Complete the table for the function machine. (2 marks, $\star \star \star$ )


| $x$ | $y$ |
| :---: | :---: |
| -2 |  |
| 0 |  |
|  | 9 |

(3) Complete the table for the function $y=\frac{x}{2}+1$. (2 marks, $\left.\star \star \star \star\right)$

| $x$ | $y$ |
| :---: | :---: |
| -2 |  |
| 1 |  |
|  | 5 |

