Question 5							
QUESTION	ANSWERS	EXTRA INFORMATION	MARK	AO / SPEC. REF.			
$\mathbf{0 5 . 1}$	equation to use is number of moles $=$ concentration \times volume $0.6 \times \frac{50}{1000}=0.03$ moles of HCl 2 moles of HCl react with 1 mole of $\mathrm{Ca}(\mathrm{OH})_{2}$	1	AO2/4.3.4 MS1c				
$\frac{0.03}{2}=0.015$ moles of $\mathrm{Ca}(\mathrm{OH})_{2}$ react $0.015=$ concentration $\times \frac{30}{1000}$ concentration $=0.015 \times \frac{1000}{30}$ concentration of $\mathrm{Ca}(\mathrm{OH})_{2}=$ 0.5 mol/dm ${ }^{3}$	1	1					
TOTAL		$\mathbf{6}$					

Question 6

06.1	17		1	AO2/4.1.1.6
06.2	100(\%)		1	AO2/4.3.3.2 MS1a/1c
06.3	M_{r} of $\mathrm{N}_{2}=28$ moles of $\mathrm{N}_{2}=\frac{14}{28}=0.5$ 1 mole of nitrogen makes 2 moles of ammonia mass of $\mathrm{NH}_{3}=0.5 \times 2 \times 17$ $=17 \mathrm{~g}$	correct answer scores 4 marks 34 g scores 3 marks (student thinks that N_{2} has an M_{r} of 14) 8.5 g scores 3 marks (student assumes a 1:1 relationship) allow ecf	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	AO2/4.3.2.2 MS1a/1b/ 3b/3c
06.4	$\begin{aligned} & \frac{2.55}{17} \times 100 \\ & =15 \% \end{aligned}$	allow ecf from 06.3 if maximum mass of ammonia of 51 g was used, the answer is 5% if 34 g was used, the answer is 7.5% if 8.5 was used, the answer is 30%	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { AO2/4.3.3.1 } \\ & \text { MS1c } \end{aligned}$
06.5	the reaction is reversible so it will not go to completion	ignore any other reasons as they cannot be deduced from the equation	1	AO1/4.3.3.1
TOTAL			9	

