Question 5				
QUESTION	ANSWERS	EXTRA INFORMATION	MARK	AO / SPEC. REF.
05.1	equation to use is number of moles = concentration × volume $0.6 \times \frac{50}{1000} = 0.03$ moles of HCl 2 moles of HCl react with 1 mole of Ca(OH) ₂ $\frac{0.03}{2} = 0.015$ moles of Ca(OH) ₂ react $0.015 = \text{concentration} \times \frac{30}{1000}$		1 1 1 1	AO2/4.3.4 MS1c
	concentration = $0.015 \times \frac{1000}{30}$ concentration of Ca(OH) ₂ = 0.5 mol/dm ³		1	
TOTAL			6	
Question 6				
06.1	17		1	AO2/4.1.1.6
06.2	100(%)		1	AO2/4.3.3.2 MS1a/1c
06.3	$M_{r} \text{ of } N_{2} = 28$ moles of $N_{2} = \frac{14}{28} = 0.5$ 1 mole of nitrogen makes 2 moles of ammonia mass of $NH_{3} = 0.5 \times 2 \times 17$ = 17 g	correct answer scores 4 marks 34 g scores 3 marks (student thinks that N_2 has an M_r of 14) 8.5 g scores 3 marks (student assumes a 1:1 relationship) allow ecf	1 1 1 1	AO2/4.3.2.2 MS1a/1b/ 3b/3c
06.4	^{2.55} / ₁₇ × 100 = 15%	allow ecf from 06.3 if maximum mass of ammonia of 51 g was used, the answer is 5% if 34 g was used, the answer is 7.5% if 8.5 was used, the answer is 30%	1	AO2/4.3.3.1 MS1c
06.5	the reaction is reversible so it will not go to completion	ignore any other reasons as they cannot be deduced from the equation	1	AO1/4.3.3.1
TOTAL			9	