×	20	6
3		

Differentiation Less confident learners:

Provide the support version of the activity sheet, which involves multiplying teens numbers by single-digit numbers. More confident learners:

Provide the extension version, which asks the children to use the grid method for HTU × U. If a child has a firm grasp of this first step grid method, they may wish to move on to the next step.

and then fill in the a	and Write underneath	$(60 \pm 10 - 70)$
	gaps. Write underneath:	00 + 10 - 70.

Demonstrate another example, such as 34×4 . Now provide an example, such as 27×5 , for the children to try for themselves, working in pairs. Review this together, with a confident child writing out the grid method on the board.

Independent work: Give the children the activity sheet 'Grid method multiplication'. Ask them to write down their approximations and then use the grid method to find the answers.

Review

Review some of the examples from each of the three levels of the activity sheet, rewrite a few examples using the next step (see above).

Lesson 10 (Review)

Starter

Recall: Repeat the Starter from Lesson 9, but this time for multiplication facts from the two-, four- and eight-times tables.

Main teaching activities

Whole class: Use the enlarged version of 'Blank number lines' and write up '65 \div 5 = \Box '. The range should be 0-65. Invite the children to suggest an approximate answer, and to explain how they worked this out. Ask: *What multiplication facts do you know with these numbers*? Agree that 10 × 5 is 50 and 3 × 5 is 15, 50 + 15 = 65, so 65 \div 5 = 13. Illustrate this on a blank number line, marked in jumps of 5 from 65 back to 0:

Discuss the fact that each time there is a jump back along the number line, 5 is subtracted, and that this happens 13 times (ie ten times and three times). Illustrate this vertically as:

65		
- <u>50</u>	(5 × 10)	
15		
- <u>15</u>	(5 × 3)	
0		Answer is 13.

Now ask the children, working in pairs, to try 56 \div 4. Review this example with the class to check that they understand how to use this method. Explain to the children how ten groups of 4, then four groups of 4 have been subtracted. Provide another example of this for the children to try in pairs: 48 \div 3. Ask them to write an approximate answer first. When the children have worked through this, invite a pair to write their solution on the board. Remind the children that it can be useful to subtract in multiples of 10, where possible.

BLOCK A